МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Калининградской области

Управление образования администрации МО

«Гусевский городской округ»

МОУ «СОШ № 1 им. С.И. Гусева»

«Рассмотрено»	«Согласовано»	«Утверждено»		
Руководитель ШМО	Заместитель директора	Директор школы		
/Полякова Е.В./	по УВР	/ В.А.Левчук/		
Протокол №1 от	/_Ю.А.Карпова/	Приказ №437 от		
«28 » августа 2023 г.	«29» августа 2023 г.	« 30» августа 2023 г.		
_				

Рабочая программа по физике (профильный уровень) 11 класс

Полякова Елена Викторовна учитель физики

Рабочая программа разработана в соответствии на основе:

- 1) Федеральным законом от 29 декабря 2012г №273-ФЗ «Об образовании в Российской Федерации»;
- 2) Федеральным государственным образовательным стандартом среднего общего образования (Утвержден приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413) с изменениями и дополнениями;
- 3) Приказом Министерства образования и науки РФ от 31 декабря 2015 года №1577 «О внесении изменений в Федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерства образования и науки РФ от 17 декабря 2010 г. № 1577»;
- 4) Концепцией преподавания учебного предмета «Физика». Утверждена решением коллегии Минпросвещения 03.12.2019;
- 5) Положением о рабочей программе по учебным предметам МОУ «СОШ №1 им.С.И. Гусева».
- «Примерной программы основного общего образования по физике 10-11 классы» под редакцией В.А.Касьянова; авторской программы «Физика 10-11 классы» под редакцией В.А.Касьянова

Реализация учебной программы обеспечивается учебным пособием «Физика. Профильный уровень 11 класс»- учебник, В.А.Касьянов Москва «Дрофа» 2017 год.

В соответствии с учебным планом на изучение физики в 11 классе отводится 132 часов в объеме 4 часа в неделю (33 учебных недели).

Некоторые темы рабочей программы вынесены на дистанционное (ДО) обучение с использованием электронных технологий.

Планируемые результаты освоения курса

Личностными результатами обучения физике являются:

- в ценностно-ориентационный сфере чувства гордости за российскую физическую науку, гуманизм, положительное отношение к труду, целеустремленность;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Патриотическое воспитание:

—проявление интереса к истории и современному состоянию российской физической науки;

—ценностное отношение к достижениям российских учёных-физиков

Гражданское и духовно-нравственное воспитание:

- —готовность к активному участию в обсуждении общественно- значимых и этических проблем, связанных с практическим применением достижений физики;
- —осознание важности морально-этических принципов в деятельности учёного Эстетическое воспитание:
- —восприятие эстетических качеств физической науки: её гармоничного построения, строгости, точности, лаконичности Ценности научного познания:
- —осознание ценности физической науки как мощного инструмента познания мира, основы развития технологий, важней- шей составляющей культуры;
- —развитие научной любознательности, интереса к исследовательской деятельности

Формирование культуры здоровья и эмоционального благополучия:

- —осознание ценности безопасного образа жизни в современном технологическом мире, важности правил безопасного поведения на транспорте, на дорогах, с электрическим и тепловымоборудованием в домашних условиях;
- —сформированность навыка рефлексии, признание своего права на ошибку и такого же права у другого человека

Трудовое воспитание:

—активное участие в решении практических задач (в рамках семьи, школы, города, края) технологической и социальной направленности, требующих в том числе и физических знаний;

интерес к практическому изучению профессий, связанных физикой *Экологическое воспитание*:

- —ориентация на применение физических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды;
- —осознание глобального характера экологических проблем и путей их решения

Адаптация обучающегося к изменяющимся условиям социальной и природной среды:

- —потребность во взаимодействии при выполнении исследований и проектов физической направленности, открытость опыту и знаниям других;
- —повышение уровня своей компетентности через практическую деятельность;

- —потребность в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы о физических объектах и явлениях;
- —осознание дефицитов собственных знаний и компетентностей в области физики;
- —планирование своего развития в приобретении новых физических знаний;
- —стремление анализировать и выявлять взаимосвязи природы, общества и экономики, в том числе с использованием физических знаний;
- —оценка своих действий с учётом влияния на окружающую среду, возможных глобальных последствий.

Метапредметными результатами обучения физике являются:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование и т.д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике;
- использование различных источников для получения физической информации, понимание зависимости содержания и форм представления информации от целей коммуникаций и адресата.

Общими предметными результатами обучения физике являются:

- 1. знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- 2. умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- 3. умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- 4. умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;

- 5. формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- 6. развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- 7. коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Частными предметными результатами обучения физике, на которых основываются общие результаты, являются:

- 1. понимание и способность объяснять такие физические явления, как свободное падение тел, колебания нитяного и пружинного маятников, атмосферное давление, плавание тел, диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел, процессы испарения и плавления вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, электризация тел, нагревание проводников электрическим током, электромагнитная индукция, отражение и преломление света, дисперсия света, возникновение линейчатого спектра излучения;
- 2. умения измерять расстояние, промежуток времени, скорость, ускорение, массу, силу, импульс, работу силы, мощность, кинетическую энергию, потенциальную энергию, температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;
- 3. владение экспериментальными методами исследования в процессе самостоятельного изучения зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления, силы Архимеда от объема вытесненной воды, периода колебаний маятника от его длины, объема газа от давления при постоянной температуре, силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала, направления индукционного тока от условий его возбуждения, угла отражения от угла падения света;
- 4. понимание смысла основных физических законов и умение применять их на практике: законы динамики Ньютона, закон всемирного тяготения, законы Паскаля и Архимеда, закон сохранения импульса, закон сохранения энергии, закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца;

- 5. понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
- 6. овладение разнообразными способами выполнения расчетов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;
- 7. умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.)

ученик научится:

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
- распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
- ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.
 - понимать роль эксперимента в получении научной информации;
- проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.
- проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;
- анализировать ситуации практико-ориентированного характера,
 узнавать в них проявление изученных физических явлений или
 закономерностей и применять имеющиеся знания для их объяснения;
- понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
 - использовать при выполнении учебных задач научно-популярную

литературу о физических явлениях, справочные материалы, ресурсы Интернет.

ученик получит возможность научиться:

- осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;
- самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;
- воспринимать информацию физического содержания в научнопопулярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
- создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Электрические и магнитные явления Выпускник научится:

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные волны, прямолинейное распространение света, отражение и преломление света, дисперсия света.
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
- использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное

сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.

- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
- приводить примеры практического использования физических знаний о электромагнитных явлениях
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света, формулы сопротивления расчета электрического при последовательном параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Квантовые явления

Выпускник научится:

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения атома;
- описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

Выпускник получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
- понимать различия между гелиоцентрической и геоцентрической системами мира;

Выпускник получит возможность научиться:

• указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;

- различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;
 - различать гипотезы о происхождении Солнечной системы.

Содержание учебного предмета

Электродинамика

Элементарный электрический заряд. Закон сохранения электрического заряда. Электрическое поле. Электрический ток. Закон Ома для полной цепи. Магнитное поле тока. Плазма. Действие магнитного поля на движущиеся заряженные частицы. Явление электромагнитной индукции. Взаимосвязь электрического магнитного полей. Свободные электромагнитные И колебания. Электромагнитное поле. Электромагнитные волны. Волновые свойства света. Различные виды электромагнитных излучений и их применения.Законы распространения света. практические Оптические приборы.

Демонстрации:

Электрометр. Проводники Диэлектрики электрическом поле. электрическом Энергия конденсатора. поле. заряженного Электроизмерительные приборы. Магнитное взаимодействие Отклонение электронного пучка магнитным полем. Магнитная запись звука. Зависимость ЭДС индукции от скорости изменения магнитного потока. Свободные электромагнитные колебания. Осциллограмма переменного тока. Генератор переменного тока. Излучение и прием электромагнитных волн. Отражение и преломление электромагнитных волн. Интерференция света. Дифракция света. Получение спектра с помощью призмы. Получение спектра с помощью дифракционной решетки. Поляризация света. Прямолинейное

распространение, отражение и преломление света. Оптические приборы

Квантовая физика и элементы астрофизики

Гипотеза Планка о квантах. Фотоэффект. Фотон. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Планетарная модель атома. Квантовые постулаты Бора. Лазеры. Строение атомного ядра. Ядерные силы. Дефект массы и энергия связи ядра. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. Доза излучения. Закон радиоактивного распада. Элементарные частицы. Фундаментальные взаимодействия. Солнечная система. Звезды и источники их энергии. Галактика. Пространственные масштабы наблюдаемой Вселенной. Современные представления о происхождении и эволюции Солнца и звезд. Строение и эволюция Вселенной.

Учебно-тематический план по учебнику В.А.Касьянов «Физика профильный уровень 11 класс»

№	Наименование раздела	Кол-во	Контрольные
Π/Π	программы	часов	работы
1	Электродинамика	45	5
2	Электромагнитное излучение	40	5
3	Физика высоких энергий и элементы астрономии	22	1
4	Обобщающее повторение	25	1
	Итого	132	12

Список литературы

- 1. Касьянов В.А. Физика. 11 кл. Профильный уровень :Учебн. для общеобразоват. учреждений М.: ДРОФА, ,2017.
- 2. Касьянов В.А. Физика. 11 кл.: Тематическое и поурочное планирование М.: Дрофа, 2017.
- 3. Рымкевич А.П. Задачник по физике для 10-11 кл. общеобразовательных учреждений. М.: Дрофа, 2017.